Axial flux motor Calculations

The following readings are the basic calculations required to model a axial flux motor. the values were changed to get the best fit in the motor calculator.

	Description	Symbol	Value 1	Units
	25132.7			
1	Rated power	Р	4	Watts
2	Nominal Motor Speed	N	3000	RPM
3	Nominal Torque t 80		80	Nm
4	Number of Phases	m1 3		
5	Coil Pitch	Wc	1	
6	Outer Diameter of Magnets	Dmagout	0.28	m
7	Inner Diameter of Magnets	Dmagin	0.2	m
	Outer Diameter of Stator			
8	Windings	Dsout	0.324	m
9	Inner Diameter of Stator Windings	Dsin	0.164	m
10	Thickness of Magnet	hm	20	mm
	Single Sided Mechanical			
11	Clearance	g	1	mm
12	Number of Stator Slots	s1	12	
	Armature turns of Single Stator	ns of Single Stator		
13	per phase	N1	100	
14	Diameter of Copper Wire dw 0.2		mm	
	Thickness of Copper wire with			
15	Insulation		0.24	mm
16	Class of Insulation Of copper Wire	F		
17	No of Wires IN parallel	aw 100		
	Air Gap magnetic Flux Density			_
18	due to magnet	Bmg	0.4	Т
19	Supplied Voltage	V 200		V
00	Number of poles (ie no of	0	0	
20	magnets	2p	ð	
01	Rectangular Serni closed Slot	b11 10		mm
21	Dimensions	h10	40	
22		1112	2	
23		<u>n13</u>	<u>h13</u> 0 m	
24		n14	0	mm
25		b12	17	mm
26		b14	17	mm
07	Copper Conductivity (Mega	Sigma	47	
27	Siemens / meter)	Sigma	47	M S/m
28	28 Length of stator Coil side Li 30		mm	

	Description	Symbol	Value 1	Units
29	Length of inner end connection	Lin	44	mm
30	Length of outer End connection	Lout	62	mm
31	Average length of stator turn	Lavg	166	mm
	Average Length of stator end			
32	connection	Lstaavg	75	mm
33	Average Diameter of Coils	Dsavg	0.244	т
34	Average Diameter of magnets	Dmag	0.24	m
	General			
	D , 1		115.470	
	Phase Voltage	V1	1	V
	Rotations per second	n n	50	rps
	Pole pairs	р	4	
	Magnetic Constant	mul	12.5663	*10^_7U/\/
	Minimum Slot pitch		1	
			43	
	Magnetic Elux density in the	CIMIN	20	
	narrowest tooth	B1tmax	0.66	т
		Ditillar	0.00	
	Carters Coefficient			
	b14/2g ratio	Const1	8.5	
			12.9990	
	gamma value	gamma	2	
			63.8790	
	Average Slot pitch t1	t1	5	mm
	kenneline	l lia	1.25548	
		КС	4	
	Factious Air gap	a'	1.23540	
		9		
	Windings Calculations		1	
	Number of slots per pole	Q1	1.5	
	Number of slots per pole per			
	phase	q1	0.5	
	Number of Conductors per coil	Nc	2500	
	Average Coil pitch in terms of			
	coils	tau -c	1.5	
	Coil Pitch to polo ratio hoto	bota	0.66666	
			1 15470	
	Distribution Factor	kd1	1	
			0.86602	
	Pitch Factor	Kp1	5	

Description	Symbol	Value 1	Units
Winding Factor	kw1	1	
Electrical angle Gamma2	gamma2	120	degrees
Torque production			
Average Pole pitch	tau	96	mm
Pole width	bp	50	mm
	•	0.52083	
	alpha-i	3	
		0.20833	
Average Magnetic Flux	Bavg	3	Т
		0.81333	
Torque Constant	kt	3	Nm/A
	L.	98.3606	
Required current for rated torque	la	6	A
Stator Line Current Density		5 4 4 0 0 0	
	Ka	5.11032	
EMF CONStant	ne ne	4	v/rps
Voltage	V	200.010	
Voltage	v	25132.7	
Power Confirmation	Р	4	
		· ·	
Magnetic Flux			
magnotorian		0.50617	
Inner to outer coil diameter ratio	kd	3	
		0.00159	
Magnetic flux	phi-f	7	Wb
Cross Section of Stator		0.03141	
Conductor	Sa	6	mm^2
Stator Winding Losses			
Stator Winding Resistance per		0.11242	
phase for DC	R1dc	4	ohm
Frequency	f	200	hz
		7.81867	
Skin effect Coefficient	k1r	8	
	Const2(Epsilo	1.01079	
	n)	3	ļ
	Const3(Epsilo	0.04046	
	n)	3	
		0.59098	
	epsilon / ep	9	

Description	Symbol	Value 1	Units
		3.46458	
	k1r-adj	2	
		0.38950	
	R1dc-real	3	ohm
Width of all Conductors in Slot	b1con	1.6	mm
Height of Conductors in slot	hc	10	mm
conductors per slot arranged			
above each other	Msl	34	
		0.06816	
Stator winding resistance in AC	R1ac	3	ohm
		1978.39	
Power Loss Due to stator	delp1w	7	
Current Density and fill			
factor			
Stator line current density	Am	108880	Amp
Cross Section of stator		0.03141	
Conductor	Sa	6	mm^2
		3.91364	
Current Density	ja	6	Amp
		0.46199	
Fill factor	Π	9	
laduatanaa			
Inductance			
Armatura Boastion Industance	lann	1.17E-0	ц
	lapp	0.01/65	
	XI XI	2	Ohm
		53 1635	Onin
Power loss due to reactance	Parm	5	W
Stator Core Losses			
		1000000	
Electrical conductivity of Iron	sigmafe	0	S/m
thickness of laminations	Dfe	0.0003	m
Specific Density of			
iron/laminations	rofe	7860	ka/m^3
Mass of laminations	mFe	11.678	ka
			···ອ
magnetic flux density	eta D	1	
Harmonic Component of			
magnetic flux density in x			
direction	Bmx1	0.3	Т

Description	Symbol	Value 1	Units
Harmonic Component of			
magnetic flux density in z			
direction	Bmz1	0.3	Т
		15.8368	
Stator Core power Loss	Del-Psfe	7	W
Hysteresis Core loss			
Richter formulas Constant epsilon			
for electrical steel with 2 percent			
silicon	eps	3.8	m^4/H.kg
Hysteresis Core Power loss	Del-Phfe	15.9755	W
Total Core Loss			
Coefficient of additional core			
losses	kad	2.4	
Total Core Power Loss	Del-P1fe	76.3497	
Permanent Magnet Losses			
Fundamental Frequency of			
magnetic flux component	fsl	2400	Hz
Magnetic Flux density		2.31E-0	
Component due to Slot opening	Bsl	5	Т
		0.75684	
Alpha sl	alphasl	7	
	Betasl	0.11664	
		0.26612	
	Const4	8	
	ko	0.83731	
Stator slot opening equivalent air			
gap	g"	20.3031	mm
Circumferential component		1.79848	
Coefficient for PMs	kz	8	
Active Surface Area of permanent		0.25132	
magnets	Spm	7	m^2
	146.	1256.63	
First narmonic angular frequency	VVV	/	
	kv	197.396	
	alabami	1.00689	
	aipnarv	4	
	hetav	02.1249	m^_1
	Delav	786 885	111: *= 1
	alphay	6	
		5.53785	
Power Loss in Magnet	DelPpm	1	w

	Description	Symbol	Value 1	Units
	Rotor Core losses			
	Neyman constant	alphar	1.5	
	Neyman constant	alphax	0.8	
			1.47519	
	Variable magnetic field coeff	alpharfe	4	
			0.73397	
	Hysteresis loss coeff	alphaxfe	2	
	Surface area of disc	аГа	0.06132	
	Bower loss due to variable	Sre	4	
	magnetic field	Deln2fe1	2	W
	magnotio nota	DolpElot	5.90986	
	Power loss due to Hysteresis	Delp2fe2	8	w
	2	•		
	Eddy current loss in Stator			
	conductors			
			0.00022	
	Volume of all conductors effected	Vcon	6	m^3
	Density of copper	rocu	8960	kg/m^3
			2.02670	
	Mass of all conductors effected	mcon	4	kg
	Power loss in stator conductor	Dalas	7.55461	14/
	due to eddy	Deipe	1	VV
	Detetionellesses			
	Rotational Losses			14/
	Frictional losses	Delptr	66	VV
	Constant for frictional loss	ktb	2	m^2/s^2
	mass of shaft	msh	5	kg
	Mass of rotor	mr	6	kg
	Winding losses with drag			
	Radius of shaft	Rsh	0.03	m
	Development of the second second	D .	536165.	
	Reynolds humber	Re		
	Dynamic viscosity of air	mu	0.00001	Pae
	Outer radius of rotor	Bout	0.16	n a.s
		ro oir	10	ka/m^2
			0.00528	Ky/III/S
	Coefficient of drag	cf	5	
	Winding losses with drag	DelPwind	10.3077	W
		20		

Description	Symbol	Value 1	Units
Efficiency			
		27281.8	
total input power	Pintot	4	w
		25132.7	
total output power	pouttot	4	w
		0.92122	
efficiency	eta-total	6	w

The above motor configuration is designed for a peak efficiency of 92% with a peak power output of 25kw.

The Basic simulations in COMSOL were done to ascertain values

Arrow surface plot of the magnetic flux density in the layered rotor made with epoxy and silicon steel laminations.

Magnetic flux density showing an average of 0.4 Tesla at the critical sections even after having epoxy layers

Electric Bike parameter Simulations

The above are basic parameter simulations for a competed bike with the specified motor.

The values could vary over 20 to 30 percent from the final

Basic range report giving us an average range of over 156 km at 65 kmph

A simple battery charge profile for 1/3rd our rated battery pack at 90V giving an estimated charge time of over 9.32 hours

Simple profile simulation of electric bike

Basic performance and heating of motor under the given profile and elevation of road.

The solid works motors parts

- 1.Stator with soft iron silicon steel cores
- 2.Rotor model with layers
- 3..Cooling Layer
- 4.Bearing hold and wiring layer

3. Brief description of the idea highlighting innovative element. (Please use a separate sheet)

Around an year ago, when we were retrofitting a <u>Maruti Omni 96</u> and building an <u>electric</u> <u>vehicle platform</u>, we faced lots of problems in procuring a reliable traction motor. Most motors that we found in India were rated at a maximum power output of under 5Kw. Most motors were not designed for traction vehicle applications. We then found out that there are multiple motor manufacturers in China, Germany etc. who supply electric vehicle traction motors at exorbitant costs with long lead times.

There is a massive shift towards electric vehicles and we foresee a major demand in the coming years as multiple manufacturers shift their product line from internal combustion engine vehicles to purely electric ones. This presents a huge opportunity as well as shows a large gap in the existing Indian market for traction motors. Hence to fill this large void, I would like to start manufacturing traction electric motors indigenously.

On an average, a 20Kw radial flux brushless DC motor with a motor controller imported to India costs over Rs 96,000. I plan to manufacture equivalent 20Kw motors for under Rs 45,000 in India.

Most traction motors are of radial flux configuration. After doing rigorous literature survey, I came to know about the distinct advantages that axial flux motors have over radial flux specifically for traction application, namely, they can produce higher torque at lower RPMs with higher efficiency and have an optimal form factor for fitting them inside rims of wheels.

I started to do analytical calculations and designed an equivalent 25Kw motor using the Excel based axial flux motor calculator developed by me. A simple analysis on COMSOL and FEMM was done to validate the results obtained by the calculator.

Currently, I'm developing and building a miniature version of the motor and will be experimenting with larger prototypes in the coming months.

The Axial flux motor is a new type of motor configuration where the magnets and coils are mounted in axial direction. It is a brushless DC motor and works on the principle of electromagnetism.

Motor has a compact Form factor such that it can be fit in the wheel hub of a vehicle. There is a higher amount of flux linkage when compared to an equivalent radial flux motor, which is widely prevalent in the market today .Due to its axial flat coil pattern it experiences higher efficiencies.

We chose to build an axial flux motor due to higher power density and higher torque constant to enable its use in Traction applications like that of electric vehicles.

(c) Final outcome/deliverable of the project

The final outcome would be in terms of a working 10Kw motor with a testing rig and a custom electric vehicle platform to test future versions of the motor.

- (d) Who would be the beneficiary of this innovation and why?
 - (Please use a separate sheet)

Currently, Indian electric vehicle manufacturers mostly depend on foreign vendors for supplying their motors at a premium.

If electric vehicle manufacturers were to buy indigenous motors built in India for, either retrofitting IC engine vehicles with electric motors or for building independent electric vehicle platforms, it would reduce their product development time by reducing the supply chain delays.

Thus, we would like to manufacture and sell cost effective, reliable electric motors to these manufacturers. An added advantage of axial flux motors is that they are inherently more efficient than their radial flux counterparts due to their form factor.

Sr.No	Items	Project Cost Own Share	PRAYAS support sought
1.	Outsourcing Charges for R&D/Design Engg/Consultancy/Testing/Expert cost	NA	2,00,000
2.	Raw material/ Consumables/Spares	NA	4,40,000
3.	Fabrication /Synthesis charges of working model or process	NA	60,000
4.	Business Travel and Event participation Fees (Ceiling 10% of approved project cost)	NA	10,000
5.	Patent filing Cost – (PCT- Ceiling 10% of approved project cost)	NA	60,000
6.	Contingency - (Ceiling 10% of approved project cost)	NA	67,000

4. Proposed costs and time frame

Project period in months: _____1 year 2 months (14 months) ______ (Not more than 18 months)

5. Activity details/work plan

Sr.N	Activities	Monitorable Milestones	Duratio
0			n (months)
	Validation of mini	A mini model of DSSR (Double stator single rotor) and DRSS (Double rotor single stator) configurations of AFPM (axial flux	
1	motor configurations	will be built, tested and validated	3
2	Design and development of large 10Kw AFPM BLDC for traction application	Material procurement and Construction of large 10Kw motor	3
3	Testing and validation of back-emf waveform as well as other motor parameters in a custom constructed motor rig	Construction of motor testing rig as well as tabulated result for 10Kw motor	4
4	Practical testing under variable load and real conditions (Testing using a custom manned EV platform)	Construction of the EV platform with motor mounting to validate its functioning	4

6. Have you received financial support / award for your present work from any other sources? (if so, please furnish details)

Mini Demo Axial flux motor development

Fig 1 - 0.8 mm dia Copper magnet wire 50 turn winding over iron core

Fig 2 - Scraping of wire ends / removal of enamel

Fig 3- Stator plan and arrangement

Fig 4,5 - Preparation of mould for casting, taping to reduce epoxy leakage

Fig 6,7 - Measurement and mixing of resin and hardener

Fig 8 - Final cast with epoxy